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ABSTRACT
As the use of prediction methods becomes more widespread in ap-
plications the chances of adversarial manipulation becomes more
likely. The canonical example is email and web spam where there
is a constant tussle. We propose classification models which are ro-
bust against data manipulation by adversaries. For example, spam-
mers are constantly manipulating data to breach spam filters by
either reverse engineering the feature set used in the classifier or
carrying out randomized attacks against the classifier.

Unlike previous game theoretic models, we define the adver-
sary’s behaviour based on the assumption that at a given time a
rational adversary can only manipulate a limited number of fea-
tures. We name this behaviour of the adversary as ‘sparse feature
attack’. Further we show that classifiers should use a sparse feature
weight to fight against an adversary’s sparse feature attack. More
realistically, we model the interaction between a classifier and an
adversary as a repeated game. Experiments on benchmark data sets
show that the classifier learnt from the game outperforms a corre-
sponding standard model. To the best of our knowledge, this paper
is the first attempt to use sparse modelling techniques for adversar-
ial learning.

Categories and Subject Descriptors
H.2.8 [Data Mining]

General Terms
Adversarial classification

Keywords
Game theory, `1 regularizer, Laplace priors.

1. INTRODUCTION
The classification problem is perhaps the most intensively stud-

ied problem in machine learning. A fundamental assumption un-
derlying most classification problems is that the training and the
test data are generated from the same underlying probability distri-
bution. This assumption is crucial for proving theoretical accuracy
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bounds regarding the performance of the classifier. However there
are at least two scenarios where the assumption does not hold in
practice.

• Concept Drift: In many scenarios, data naturally involves.
For example, suppose a credit card scoring model was built
during “good” economic times. Then it is natural to expect
that the performance of the classifier is likely to deteriorate
during a recession.

• Adversarial Reaction: In some situations there is a natural
adversarial reaction to the classification. For example, spam
filters (which are classifiers) routinely have to be updated as
an “adversary” tries to circumvent the classifier by modifying
spam templates.

The focus of this paper is on adversarial learning, to be specific,
classification by taking the existence of the adversary into account.
Dalvi et al. [4] have modelled the interaction between a data miner
and an adversary as a game between two cost sensitive players. The
authors made an assumption that both adversary and data miner
have full information of each other. This perfect information model
is unrealistic in a web setting. Lowd et al. [10] relaxed the perfect
information assumption and devised an approach known as adver-
sarial classifier reverse engineering (ACRE) to study the possible
attacks the adversary may carry out. While this framework can
help a learner identify its vulnerability, no classifier was proposed
that was robust against manipulation.

Globerson et al. [7] formalized the interaction between the two
players as a minimax game, in which both players know the strat-
egy space of each other. They made the assumption that the effect
of the adversary will be deletions of features at application time.
This feature deletion assumption, however, fails to capture the sce-
narios where the adversary is capable of arbitrarily changing the
features.

Liu et al. [9] formulated the interaction between a data miner and
an adversary as a zero-sum sequential Stackelberg game, where the
adversary is the leader and the data miner is the follower. However,
the zero-sum game is unrealistic when the adversary is not entirely
antagonistic towards the classifier. For example, in the case of spam
email, a classifier’s loss is not necessarily the spammer’s gain. We
denote this model as SSG (sequential Stackelberg game).

Brückner et al. [3] also modelled the adversarial learning sce-
nario as a Stackelberg game between two players. However, the
leader role is played by the data miner and the authors assume the
payoff of the two players while in conflict, are not entirely antago-
nistic. Unlike Liu et al. [9], they made the assumption that the ad-
versary can manipulate both positive and negative instances. How-
ever, the final formulation of the game is an example of bi-level op-
timization problem. Thus, the solution obtained is not guaranteed



to attain a global optimal. We denote this model as SG (Stackelberg
game). Moreover, both Liu et al. [9] and Brückner et al. [3] made
the unstated (but unrealistic) assumption that the adversary has the
ability to change all the features i.e., ’dense feature attack’.

Recently, Zhou et al. [16] devised an model based on support
vector machines that can tackle two kinds of attacks an adversary
may carry out. However, the effectiveness are verified on artifi-
cially manipulated test data instead of real world adversarially in-
volved data.

Xu et al. [15] find that solving lasso is equivalent to solving
a robust regression problem. This robust property of lasso itself
exibits the merits of sparse modelling technique in the presence of
potential adversaries.

In this paper, we make the following contributions:

• We derive a new model which formulates the interactions be-
tween data miner and the adversary as a repeated game.

• We propose algorithm and regularized loss functions so that
the game is casted into two convex optimization problems.

• We investigate the use and robustness of the `0 and `1 regu-
larizer (both for the data miner and the adversary) to create
sparse models.

• We conduct experiments on real email spam data sets which
testified the superiority of the sparse models.

The outline of this paper is as follows. Section 2 introduce the
problem. We begin with an introduction of the formulation of a
repeated game and preliminary in Section 3. In Section 4, we elab-
orate on the repeated game and the approach to solve the game.
Finally, in Section 5 we conduct all the experiments together with
analysis. Section 6 is conclusions and future work.

2. PROBLEM DEFINITION
Given a sample of data (xi, yi)

n
i=1 the standard classification

problem is defined as

w∗ = arg min
w

n∑
i=1

`(yi,w
txi) + λw‖w‖p

Now, we bring in an adversary, who controls a vector a with
which it modfies the data x. However, it is important to note that
the adversary changes the spam data (which is y = 1). In order to
formalize the problem we separate the data into positive and neg-
ative part. Assume the positive data is indexed as (xi, 1)nposi=1 and
the negative data is indexed as (xi,−1)ni=npos+1

The classifier still aims to find the optimal w give by w∗

argmin
w

npos∑
i=1

`(1,wt(xi + a∗)) +
n∑

i=npos+1

`(−1,wtxi) + λw‖w‖p

subject to the constraint that a∗ is given by

arg min
a

npos∑
i=1

`(−1,wt(xi + a)) + λa‖a‖p

`(yi,w
txi) can be any of the three loss functions given in Table

1;
A number of existing literature tried to solve a similar simultane-

ous game and investigated varies loss functions. However, there are
at least four defects that prevail in all these models. One problem is
that they consider both players will conduct dense strategy i.e., all

`(yi,w
txi)

Square 1
2
‖yi −wtxi‖2

Logistic log(1 + exp(−yiwtxi))
Hinge (1− yiwTwtxi)+

Table 1: Commonly used loss functions for the two players.

the values in w and a are non-zeros which is practically inappropri-
ate for real world players. The second one is that the parameter λa
is mostly arbitrarily decided. thirdly, real players in adversarial en-
vironment rarely play a simultaneous game. Last but not least, the
resulting problem is ‘NP’ hard to solve and thus only local optimal
is obtained under certain relaxations.
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Figure 1: The figures describe adversarial classification problems
in two dimensional space. Circle represents a group of data be-
longing to the the same category, the straight lines represent the
classification boundary. Figures 1a and 1b reflect the adversary is
applying dense feature attack. In this case, the classifier moves the
boundary backwards in parallel and suffers large classification loss.
Figures 1c and 1d shows the adversary is applying sparse feature
attack. Noticeably, positive data can still be distinctive to negative
data and at the same time, breach the classification boundary. Clas-
sifier adapt itself by changing the slop of the boundary and does not
suffer as much.

Let we first illustrate the rational behind our assumption that an
adversary should apply sparse feature attack. Consider the two sce-
narios shown in Figure 1 which demonstrate the classical three-step
life-cycle for two classification games in two dimensional space:
(1) The data miner (as the spam filter) uses an acquired labelled
data set to build a classifier. Figure 1a and Figure 1c depict classi-
fication boundary with `2 regularizer. (2) An adversary (as spam-
mer), over time, inspects the classification boundary and deliber-
ately transforms the positive data (i.e., spam email) to cross the
decision boundary. In Figure 1b dense feature attack can be con-



sidered as the worst case assumption that the spammer can manip-
ulate the whole feature spaces and carry out the maximum damage,
which is practically impossible. In other worlds, adversary suffer
great cost by changing all the features and losing its advertising
utility because of becoming more like non-spam emails. How-
ever, in Figure 1d sparse feature attack implies the adversary can
only transform positive data either vertically or horizontally. This
is reasonable since in the case of spam email filtering, spammer can
only manipulate a limited numbers of features. More importantly,
by applying sparse feature attack, the direct objective of the spam-
mer is to circumvent the classifier instead of making spam more
like non-spams. (3) Data miner responds by rebuilding the classi-
fier. We should notice under dense feature attack, classifier moves
its boundary backwards in parallel to adapt the new situation and
thus suffers great loss in classification accuracy. However, under
sparse feature attack, the classifier adapt itself by changing the slop
of the boundary and keeps the classification accuracy almost status
quo. In a true adversarial environment with high dimensionality,
the three step game given here can be played repeatedly in time.
Thus, the game between the two players can be naturally simu-
lated as a repeated game. We claim when both players are utilizing
sparse models, a more robust adapted classifier can be achieved
through the game.

3. PRELIMINARY
In this section we first propose the concept of a repeated game,

then we introduce the two main regularization technique in the case
of logistic loss. finally we report on the connection between lasso
and robust regression.

3.1 Repeated game
The simultaneous game proposed in the literature has limited

practical use as it is impossible to decide how much an adversary
will affect the data distribution. Also, the resulting problem is NP
hard. Therefore, the theoretical Nash Equilibrium not necessarily
leads to a better feature weights w for the data miner [2]. To model
the problem in a more practical way, we should relax the assump-
tions of the simultaneous game.

The model of a repeated game in the case of adversarial classifi-
cation can be described as below:

Data miner chooses strategy w0 based on the observed samples
drawn from the sample space by minimizing its loss function:

w0 = argminw
∑n
i=1 `(yi,w

txi) + λw‖w‖p.
In the following steps, i = 1, ...+∞;

1. Adversary chooses strategy ai, which is the manipulation
vector, with the knowledge of data miner’s strategy

wi−1, i.e., ai = argmina
∑npos
i=1 `(−1,wt(xi + a))+λa‖a‖p.

The manipulation is then applied to the sample space and∑npos
i=1 x∗i =

∑npos
i xi + a.

2. Data miner chooses strategy wi based on the samples drawn
from the manipulated sample space.

wi = argminw
∑n
i=1 `(yi,w

tx∗i ) + λw‖w‖p.

In real world, the game can keep playing repeatedly. Thus, we also
developed a mechanism to stop the game at a proper time which
will be elaborated in Section 4.1.

The goal of the data miner is to determine a decision boundary
based on continuously manipulated training data in each step. For
the adversary, the goal is to determine a manipulating vector based
on a given budget in each step. What we are interested is an adapted
classifier, i.e., feature weights wi, which has the potential of being

more robust on future adversarially influenced data set. For ex-
ample, if we play the game “ Rock, Paper, Scissor ” in a repeated
fashion, the player who plays last always wins.

With properly defined loss functions, adversary’s behaviour in
real world can be captured and thus a more robust feature weights
can be obtained through this simulated game. The challenge here is
to find the properly defined regularized loss functions for both data
miner and adversary.

3.2 Gaussian prior
Here we illustrate the `2 regularizer from the perspective of the

Bayesian inference with Logistic loss function. Logistic loss func-
tion is defined as:

L(w) =

n∑
i

log(1 + e−yiwT xi)

Where yi ∈ {−1, 1} is the binary class label, xi(i = 1, ..., n) is
the feature vectors and w ∈ Rd+1 is the feature weights, d is the
number of features. `2 norm was originally added to prevent over-
fitting. The mathematical explanation was given later. In the view
of Bayesian inference, the logistic loss function is the negative log
of likelihood P (x|w). By adding the `2-norm, we are effectively
assuming each elements wj of w is generated from a Gaussian dis-
tribution with hyper-parameterN (0, τj) [6]

p(wj | τj) =
1√

2πτj
exp(

−w2
j

2τj
), j = 1, ..., d. (1)

Now we minimize the negative log of likelihood with a prior dis-
tribution, that is − logP (x|w)P (w). This is essentially the max-
imum a posterior estimation. The effect of the prior P (w) is re-
flected as penalizing large absolute values of wj . The maximum a
posterior estimation in this case can be written as:

n∏
i

1

1 + e−yiwT xi

d+1∏
j

1√
2πτj

exp(
−w2

j

2τj
),

By assume τj is a constant τ for all j, it is known [6] that:

L(w) =

n∑
i

log(1 + e−yiwtxi)

+

d+1∑
j

w2
j

2τ
+ (d+ 1)(ln

√
τ +

ln 2π

2
)

The last part of the above equation is a constant which can be
dropped and resulting in the final equation:

L(w) =

n∑
i

log(1 + e−yiwtxi) +
1

2τ
‖w‖22

This regularizer will penalize and constrain the squared sum of vec-
tor w, however, it does not favour wj being exactly zero.

In many applications, a feature vector with a lot zeros in it (i.e.,
a sparse solution) is preferable in terms of both computation and
memory efficiency. To achieve this, we have to assume another
prior distribution over wj .

3.3 Laplace prior
Similar to `2 norm, for `1 norm we first assume each wj comes

from a Gaussian distribution with hyper-parameterN (0, τj). How-
ever, similarity ends here, we further assume each τj is generated
from an exponential distribution with parameter γj

p(τj|γj ) =
γj
2

exp(−γj
2
τj), γj > 0.



Combining Equation (1) and the above equation we get Laplace
distribution:

p(wj |γj) =

√
γj

2
exp(−√γj |wj |),

Effectively, this means we assume wj follow a Laplace distribu-
tion. Again we assume each γj equals to γ and the posterior in this
case will be:

n∏
i

1

1 + e−yiwT xi

d+1∏
j

√
γ

2
exp(−√γ|wj |),

The negative log of the above formulation will be:

L(w) =

n∑
i

log(1 + e−yiwT xi)

+

d+1∑
j

√
γ|wj |+ (d+ 1)(ln 2 + ln

√
γ)

Again, we omit the last part and get the final equation:

L(w) =

n∑
i

log(1 + e−yiwT xi) +
√
γ‖w‖1

This `1 regularized logistic loss optimization problem can be solved
by transform its lower bound optimization problem into linear pro-
gramming [14].

3.4 Lasso and robust regression
A learning algorithm is robust if the model it generates is resis-

tant to bounded perturbations in the data. Robust learning algo-
rithms is an active area of research and the robust linear regression
problem is defined as

min
w∈Rd

{max
|z|≤λ

‖y − (x+ z)w‖2} (2)

The key insight about robust regression as defined in [15] can be
derived from considering the one-dimensional case. For example,

max
|z|≤λ

|y − (x+ z)w| ≤ |y − xw|+ c|w|

Now consider a specific z∗ = −λsgn(w)sgn(y − xw). Clearly
|z∗| ≤ λ. Furthemore,

max
|z|≤λ

|y − (x+ z)w| ≥ |y − (x+ z∗)w|

= |y − xw|+ |λsgn(w)sgn(y − xw)w|
= |y − xw|+ λ|w|

Thus

max
|z|≤λ

|y − (x+ z)w| = |(y − xw)|+ λ|w|

This generalizes to

min
w∈Rd

{max
|z|≤λ

‖y − (x + z)w‖2} = min
w∈Rd

‖y − xw‖2 + λ‖w‖1

On the other way around, from the work by Huan et al. [15]
we know that solving the lasso problem is equivalent as solving the
problem

min
w∈Rd

{max
4x∈µ

‖y − (x +4x)w‖2},

where4x ∈ µ is the worst case disturbance of noise and µ has

µ , {(δ1, ..., δd)|‖δi‖2 ≤ λi, i = 1, ..., d}.

This means solving a `1 regularized least square problem is equiva-
lent to solving a worst case linear square problem with noise4x ∈
µ. This intrinsic property of `1 regularization indicates that it will
outperform `2 regularization when the data set is noisy. More im-
portantly, this robust regression equivalence provides us a way for
setting a reasonable budget for adversary.

4. ADVERSARIAL CLASSIFICATION AS A
REPEATED GAME

In this section, we first elaborate on the game with logistic loss
function and present the formal algorithm. Then we report on the
intuition behind the assumption that for both players, sparse strat-
egy should be applied.

4.1 Repeated game with logistic loss
We present the repeated game model here in detail. The data

miner first builds the initial classifier on the original training data
D = {xi, yi}ni=1 using standard logistic loss function: log(1 +

e−yiwT xi). Here we arrange the training data so that the first p
data points are positive data (spam email), and the rest n − p data
are negative data (ham email). The original classifier is obtained
through the following minimization problem:

Initial classifier

w = argmin
w

1

n

n∑
i=1

log(1 + e−yiwT xi ) + λw‖w‖p (3)

Regularizer ‖w‖p can be `1 or `2 norm. λw ≥ 0 is the regular-
ization parameter. After the initial classifier is established, in the
near future the feature weights w determined by the data miner can
be discovered by the adversary. The adversary will then attempt
to change the positive data distribution with a vector a. The initial
classifier built on the original training data will be obsolete. Loss
function for adversary is defined as: log(1 + ewT (xi+a)) [3]. This
logistic loss function measures the loss of a data point being clas-
sified as negative. Adversarial square loss and hinge loss can be
derived with the same logic. For hinge loss of adversarial it mea-
sure the loss of the true positive points being classified as a nega-
tive. Here we assume adversary can only manipulate positive data
which is based on the intuition that spam emails are more like non-
spam emails in the future, while, non-spam emails rarely change. A
rather desirable property of this loss function is its convexity, which
is a necessary condition for us to apply the efficient convex solver.
The manipulation vector a of adversary is decided by minimizing
the loss of positive data being classified as negative data:

Adversary Attack

a = argmin
a

1

npos

npos∑
i=1

log(1 + ewT (xi+a)) + λa‖a‖p (4)

npos is the number of positive data, λa is the parameter which
controls the scale of aj . The adversarial transformation is made by
adding positive data points with adversarial change a. In the next
step, data miner defends itself by retraining the classifier based on
the transformed training dataD∗ = {(x∗1 = x1+a, y1), ..., (x∗npos =
xnpos + a, ynpos), (xnpos+1, ynpos+1), ..., (xn, yn)}. Notice that
the data here is neither the future data nor the original training data.
It is the simulated future data generated by the adversary based on
the original training data D. The following equation describes the
play of the data miner:

Data Miner defend

w = argmin
w

1

n

n∑
i=1

log(1 + e−yiwT x∗i ) + λw‖w‖p (5)

The three steps played by the two players correspond with the two
examples depicted in Figure 1. Then adversary may attack again



Algorithm 1 Repeated Game
Input: Training data D = {xi, yi}ni=1, upper bound of the maximum cost

MC =
λ∗wd√
n

, Norm ‖w‖p, ‖a‖p
Output: all w generated

1: // Build the initial classifier using original training data:

2: w = argminw
1
n

∑n
i=1 log(1 + e−yiwT xi ) + λw‖w‖p

3: Cost← 0, aSum ← 0, D∗ = D
4: while Cost <= MC do
5: // First step: Adversary attack

6: a = argmina
1

npos

∑npos
i=1 log(1 + ewT (xi+a)) + λa‖a‖p

7: for positive data :
∑npos
i=1 x =

∑npos
1 x + aSum

8: // Second step: Data miner defend

9: w = argminw
1
n

∑n
i=1 log(1 + e−yiwT xi ) + λw‖w‖p

10: //Calculate accumulated cost
11: Cost+ = ‖a‖1
12: end while
13: return w generated

and the game goes to infinite. The pseudo-code of the repeated
interaction is described in Algorithm 1. We let the game termi-
nate when the accumulated change applied by adversary reaches a
predefined threshold MC. The value of MC in this algorithm is
defined as upper bound of the real Cost which is the accumulated
`1 norm of the manipulating vectors ai. Formally present it as:

MC ≥ Cost =
r∑
i=1

‖ai‖1

where r is the number of repetitions of the game. From Section 3.4
we know that by adding `1 regularizer, we are practically assum-
ing there is an adversary that is adding nose to both positive and
negative data to maximize the loss of the classifier with respect to
any classification boundary. Parameter λw controls how much the
noise the adversary can apply. One can observe that the problem is
solved at ‖z∗‖2 = λw. If the parameter λ∗w is obtained by ten-fold
cross validation, then it practically decides the amount of noise that
is necessary to counter the over-fitting phenomenon. While for our
repeated game model, adversary is also trying indirectly increase
the loss of the classifier, however not as aggressive as the one in the
robust regression problem since we only assume that an adversary
can only manipulate positive data. Thus we expect the the budget
for our adversary should be at least as the same as the amount of
nose that is applied by the adversary in robust regression problem.

Formally, we first assume the noise of one particular feature is
the same to all the data points, thus we have

z
√
n = λ∗w

z =
λ∗w√
n

Then we assume the noise to each feature is the same i.e., λ = λi

MC = ‖z‖1

=
λ∗wd√
n

≥ Cost

Notice that the λ∗w here is always the value tuned with Lasso.

4.2 Evaluation of regularizer
As we illustrated in Section 1, both the two players should apply

`0 norm. However, as the resulting optimization problem will be
NP hard to solve, we should apply `1 norm as an approximation.

We then compare the performance of the model resulting from `1
or `2 regularizer.

It is obvious that we have four variants by combining the two
players’ loss function with different regularizers. ‖w‖p and ‖a‖p
can be `1 or `2-norm. In the case of ‖w‖p = ‖w‖2 and ‖a‖p =
‖a‖2, we denote this model as Game − L2dL2a. Similarly we
have denote the other three model as Game− L2dL1a, Game−
L1dL2a and Game − L1dL1a. We also denote initial classifier
with `2 and `1 regularizer as Initial-L2-classifier and Initial-L1-
classifier respectively. Experiments of the repeated game are re-
ported in Section 5.4;

Here we report on the behavioural difference between each player
with different regularizers. Specifically, we justify why the be-
haviour of the two players resulted from `1 regularizer should be
the most reasonable combination.

4.3 Why sparse feature attack for adversary?
We begin by reveal the inappropriate assumption that adversary

will simply minimize a loss function with or with out an `2 reg-
ularizer. Since this assumption indicates that adversary will ap-
ply dense feature attack as in [9, 3], it implies every single feature
of the sample space will be tampered. This becomes impractical,
for example, in the case of spam email; formidably costs will be
brought to the spammer for changing various details of the spam
template. Also, this dense feature attack behaviour also indicate
that the spam template will be more resemble a non-spam email.
The consequence of this fact is that the advertising utility of the
spam email will decrease dramatically. Common practice tells us
that a rational spammer can only concentrate on changing a limited
number of features of the spam template in a short period. Thus
a sparse feature attack is more realistic as we assert. By assuming
the adversary will apply sparse feature attack, practically it indi-
cates that the spam-template will be engineered in the aim of cross
the classification, and in the meantime, be distinctive to non-spam
emails. This sparse feature attack can be exactly modeled by com-
bining its loss function with `0 regularizer and solved by using `1
regularizer, which also gives sparse formulations of the manipula-
tion vector a. In a simple case, as depicted in Figure 1d, adversary
can only move the positive data leftward.

As one can speculate, if we let the game keep playing with no
ending, it will reach a state where the positive and negative data al-
most overlap. However we can imagine the classifier learned from
such a game will have the most undesirable performance. Still we
conduct this experiment to examine under how much cost will the
adversary achieve such a ’Equilibrium’. We expect the adversary
with sparse feature attack achieve the ’Equilibrium’ with less cost
as the one with dense feature attack. The results are reported in
section 5.2

4.4 Why `1 regularizer for data miner?
As reported in section 3.4, the lasso problem is equivalent to a

robust regression problem. While regularizer has always been con-
sidered as a method to penalize the weight value to achieve a better
generalization property, Here we find that `1 regularizer can not
only be as a technique to prevent overfilling, but also make a more
robust classification boundary. This itself indicate that classifier
learnt with an `1 regularizer is more robust in the presence of cer-
tain data manipulations. Therefore, in the case of an adversarial
environment, a normal classifier with `1 regularizer is preferred.

Existing literatures [12, 1] have indicated that in a classical clas-
sification environment, when `1 regularizer is applied, there will
always be a trade-off between sparsity and accuracy of the classi-
fier acquired. However, depending on the data set itself, the overall



Algorithm 2 Robustness evaluation under sparse feature attack
Input: Original data set {xi, yi}ni=1, Feature weights w ∈ Rd+1, Num-
ber of features to be changed {c ∈ N|(0 < c ≤ d)} . Attack strength
{δ ∈ R|(0 < δ < 1)}
Output: Changed data set {x∗i , yi}

n
i=1

1: // Randomly select c features of the data and index in vector a = {0 < ak ≤
d}ck=1

2: for i = 1; i ≤ p; i+ + do
3: x∗i ← xi, k ← 1

4: while k <= c do
5: if wak > 0 then
6: x∗ak

= x∗ak
(1− δ)

7: else
8: if wk == 0 then
9: do nothing
10: else
11: if wk < 0 then
12: x∗ak

= x∗ak
(1 + δ)

13: end if
14: end if
15: end if
16: k = k + 1
17: end while
18: end for
19: evaluate w on changed data set {x∗i , yi}

n
i=1

performance of an `1 regularized classifier can sometimes beat an
`2 regularized classifier [11] in terms of both bias and variance.
The discussion of that is beyond the scope of this research. Here,
we compare the performance of the two classifier under the condi-
tion that the distribution of the test data is altered by an adversary.

To investigate the influence of an adversary, we start by looking
at how the loss function can be influenced by the adversary:

L(w) =

n∑
i

log(1 + e−yi<wT ,xi+a>) + λw‖w‖p

=

n∑
i

log(1 + e−yi<wT ,xi>+<wT ,a>) + λw‖w‖p

As we can see from this equation, the adversarial influence is gen-
erated in only the factor < wT , a >. This is the dot product of
the feature weight vector and manipulation vector, which can be
described in detail as: w1a1 + w2a2 + ... + wdad. One should
notice that when more than one of the two vectors are dense vec-
tors, < wT , a > will always be non-zero. In other worlds, only
if both the two vectors are sparse vectors, < wT , a > will have
a high probability of being zero. When this factor is zero, the in-
fluence of adversary also disappears. Thus, we can conclude that
when adversary is with sparse feature attack, data miner should ap-
ply `1 regularization. This analysis can be easily generalized into
much higher dimensions. We can also conclude here that the ad-
versarial influence of the sparse classifier has a negative correlation
with its sparsity. To prove the effectiveness of the above analysis,
we conduct experiments to see if classifier with `1 regularizer have
better results under the sparse feature attack. We generate a data set
which is adversarially transformed by an adversary who can only
manipulate a limited number of features. We then test the two ini-
tial classifiers with different regularizers on the transformed data
set. The detailed procedure is described in Algorithm 2. Results
are reported in Section 5.3

5. EXPERIMENTS
The benchmark data set and feature selection technique are re-

ported in Section 5.1. Section 5.2 illustrates the rationality of an

adversary conduct sparse feature attack. In Section 5.3, we con-
duct experiments to show the superiority of initial classifier with `1
regularizer. Results of our four game-theoretic models are reported
in Section 5.4. We further verify the effectiveness of the assump-
tion of the adversary in Section 5.5. For logistic loss we use the
efficient solver BMRM [14], while for square and hinge loss we
use CVX [8]. Data set and the code can be downloaded here 1.

5.1 Data set
To test the validity of our game model, we conduct experiments

on real world data set. The data set is a collection of chronologi-
cally arranged 128, 117 emails from publicly available mailing lists
augmented by spam emails from Bruce Guenter’s spam trap of the
same time period (01/04/1999− 31/05/2006). This data set has
also been used in previous adversarial learning research [3]. The
original data set we obtained is the inverted table of all the words,
symbols etc. of the original spam emails. We conducted feature
selection by applying kernel-PCA map [13, 2] which is defined as:

φPCA : x 7→ Λ
1
2
+

V T [k(x1, x), ..., k(xn, x)]T . (6)

Here V is the column matrix of eigenvectors of kernel matrix K,
K is defined as dot product of data points k(x, x) = xT x. We use
the first 2000 instances to formulate a 2000× 2000 kernel matrix.
Λ is the diagonal eigenvalue matrix of K such that K = V ΛV T ,
and Λ

1
2
+

represents the pseudo-inverse of Λ
1
2 .

Traditionally, kernel PCA map is used for transform a data set
from lower dimension into a higher dimensional space. However,
in our case we shrink the feature dimensions, from 266, 378 to 50
to be precise. The selected 50 features are informative enough for
training a regular logistic classifier with desirable F-measure score
(0.967) on training data. High efficiency and information preserv-
ing quality can be achieved with dot product as the kernel.

The first 2000 instance are used as the training data, the rest are
test data, we train our model with unbalanced instead of balanced
data. This is crucial to accurately reflect the distribution of test
data.

One more spam email data sets are also used to compare the
robustness of the learning algorithm in Section 5.3;

• ‘Spambase’ is also a spam email data set[5]. Spam e-mails
came from their postmaster and individuals who had filed
spam and non-spam e-mails from work and personal e-mails.
Most of the features (48 out of 57) are frequency of key
words.

5.2 Why sparse feature attack for the adver-
sary?

For this experiment, we simply play the two games Game −
L1dL2a and Game − L1dL1a by setting the MC to infinity and
play as many repetition as possible. We then measure and compare
the Cost of the two models. Results are averaged value of 30 runs.
Figure 2 shows the accumulated cost of the adversary to the repeti-
tion of the game. We can observe clearly that for the sparse model
Game − L1dL1a, adversary with sparse feature attack reaches a
stable state with significantly less cost. While adversary with dense
feature attack in model Game − L1dL2a continues to change the
data even after the positive and negative data almost overlapped.

5.3 Why `1 regularizer for data miner?
Here we conduct experiments to compare the performance of an

initial classifier with `1 and `2 regularizer respectively under few
1https://sites.google.com/site/
adversariallearning/code
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Figure 2: Adversary with sparse feature attack reaches stable state
faster and is associated with lower cost. Results are averaged value
of 30 runs.

feature attack as proposed in Section 4.4. We generate the tempered
training data as described in Algorithm 2. The attack is conducted
as follow: We randomly select twenty percent of the number of
features to be changed, i.e. we set c = 10% × d. The attack
strength δ is set from 0 to 40% with step size 0.2%.
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(b) AUC value comparison .

Figure 3: Initial classifier with `1 regularizer is more robust in both
F-measure and AUC value compared that with `2 regularizer.

In terms of F-measure and AUC value, as depicted in Figure 3,
without adversarial effect, classifier with `1 regularizer appears ini-
tially undesirable in both F-measure and AUC value. However, as
the strength of the attack increases, accuracy of classifier with `2
regularizer decreases rapidly and always outperformed by classifier
with `1 regularizer. This shows that in the presence of an adversary
who can only manipulate a limited number of features, `1 regular-
izer should be applied by the classifier to achieve higher accuracy.

Here we also test the robustness of the learning algorithm with
the existence of noise. We again begin with a data set X . On each
separate run i we add bounded noise ∆Xi. Let w1 be the model on
X using the `1 regularizer andw2 using the `2 regularizer. For each
i we compute the AUC for X + ∆Xi for each of the regularizers.
Thus f∆

1 (i) = AUC(X + ∆Xi|w1) and likewise for f2(i). Let
f∆

2 (i) = AUC(X + ∆Xi|w2), i.e., the accuracy of the model
trained on the data set X + ∆Xi. Like in the case of stability, we
form the sets

DR1 = {f∆
1 (i)− f1(i) | i = 1 . . . 1000}

DR2 = {f∆
2 (i)− f2(i) | i = 1 . . . 1000}

The results of the distribution of both DR1 and DR2 are shown in
Figure 4 and clearly show that the data points of `1 are more tightly
concentrated compared to `2. This again confirms that when the
data is noisy, then `1 leads to more robust classifiers compared to
`2.
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Figure 4: Robustness: The figure indicates that distribution results
of `1 regularizer has lower standard deviation and thus more robust.

0 2 4 6 8 10 12
85

90

95

100

Cost of adversary

F−
m

ea
su

re

 

 

Game−L
2
L

2
Game−L

2
L

1
Game−L

1
L

2
Game−L

1
L

1

Figure 5: F-measure results of all game-theoretic models decreases
on the original training data as the adversary’s attack strength in-
creases.

5.4 Experiments of the repeated game
Parameter tuning of our models are explained in Section 5.4.1.

In the following two sub sections, we split our four new models
into two groups: one is data miner with `2 regularizer (Initial-
L2-classifier, Game − L2dL2a and Game − L2dL1a), and the
other group is data miner with `1 regularizer (Initial-L1-classifier,
Game−L1dL2a andGame−L1dL1a). We compare and present
the best sparse game-theoretic model: Game−L1dL1a in Section
5.4.4.

5.4.1 Parameter tuning
We take F-measure as the metric for tuning the parameters. λw

of the the two initial classifiers are tuned with ten-fold cross valida-
tion. Based on our assumption that spammer will change their tem-
plate incrementally with small steps, we set parameter λa for the
adversary as the same proper value. We run our algorithm with no
upper bound of the Cost and stops with sufficiently enough repeti-
tions. For each repetition of the game, we will get a pair of vectors
for each of the players: feature weight w and manipulating vector
a. We then select the adapted classifier when Cost reaches MC.
As one can think of, the adapted classifier will probably have infe-
rior performance on original training data compared with the initial
classifier. In a way, we have a balance between the performance
of the adapted classifier on the near future data and far future data.
This is because as we assume training and test data have differ-
ent distribution characteristic, you end up with a balance between
performance on near future test data (which has similar distribu-
tion with original training data) and performance on far future test
data. Here we study whether the threshold MC give us a proper
balance. We run the game with sufficient repetitions and plot the
performance of the adapted classifier on original training data in the
accumulated costs of adversary. From Figure 5 we can notice that
F-measure of all the four models degrade as the adversarial change



increases. Game modeGame−L1dL2a have a sudden drop when
adversary cost reaches 5. This reflect that `1 regularized classifier
can be vulnerable to an adversary which conduct dense feature at-
tack. We look for the cost when it is equal toMC and find that it is
near 4. This seems to be a very good balance since after this point
performance of the model Game− L1dL2a dropped sharply. We
then compare the performance of the four adapted classifiers on the
future test data in the following sections.

5.4.2 Initial-L2-classifier, Game−L2dL2a andGame−
L2dL1a

There are two adapted classifiers obtained from the two mod-
els when data miner is with `2 regularizer: Game − L2dL2a and
Game − L2dL1a. We examine and compare the two classifiers
together with initial classifier with `2 regularizer in terms of F-
measure, Roc-curve and AUC-value. F-measure results of the three
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Figure 6: Game − L2dL1a model outperforms initial classi-
fier with `2 in terms of F-measure, while Game − L2dL2a and
Game − L2dL1a outperformed by initial classifier in terms of
AUC-value.

models are illustrated in Figure 6a. Notice that both the two adapted
classifiers sacrificed performance on near future test data (from
Jan00 to Mar02), which verified that there is a trade-off between
performance on near and far future test data. It also indicates the
classifier of model Game − L2dL1a has a better performance on
the real future data than the initial classifier, while classifier of
Game − L2dL2a shows no improvements. This result complies
with our example given in Figure 1.

For ROC-curve, we only show the portion when False positive
is from 0 to 0.2 to better examine the difference. We noticed that
in Figure 6b, both the two adapted classifiers are outperformed by
the initial classifier in terms of AUC-value. The undesirable results
in AUC-value can be explained as the two new classifiers scarified
more on near future test data than the robustness gained on far fu-
ture test data.

5.4.3 Initial-L1-classifier, Game−L1dL2a andGame−
L1dL1a

The other two variant models areGame−L1dL2a andGame−
L1dL1a. Again we examine the two adapted classifiers together
with initial classifier with `1 regularizer.

From Figure 7a, surprisingly we can observe that F-measure re-
sults of the two classifiers outperform the initial classifier on almost
the whole time span. In other words, the two new adapted classi-
fiers are both robust to near and far future test data. Noticeably,
classifier from sparse model Game−L1dL1a has the best perfor-
mance.

Unlike Game − L2dL1a and Game − L2dL2a, as indicated
in Figure 7b, performance of AUC-value comparisons also indicate
that classifiers of the two new models outperform initial classifier
with `1 regularizer.
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Figure 7: Game−L1dL2a andGame−L1dL1a both outperform
the initial classifier with `1 regularizer in terms of both F-measure
and AUC-value. More importantly, sparse modelGame−L1dL1a
achieves the best performance.
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Figure 8: Loss function as Logistic Loss: Game − L1dL1a has
the best F-measure results on far future test data and better results
on the whole test data overall.

5.4.4 Game− L2dL1a vs. Game− L1dL1a

Here we first compare the two initial classifiers with `1 and `2
regularizer respectively. From Figure 8 we can observe that initial
classifier with `2 regularizer is better in F-measure. This is also
reflected in terms of AUC-value as can be observed in Figure 7
and Figure 6. By fully utilize the information of the data set, a
classifier with `2 regularizer can always determine a more precise
decision boundary. However, with the existence of an adversary,
this merit of `2 regularizer may disappear in the future. Notice-
ably, in the far future, data miner with `1 regularizer can compete
or even outperform that with `2 regularizer. We further compare the
two adapted classifiers of the two sparse model Game − L2dL1a
and Game − L1dL1a. In Figure 8 we notice that both the two
adapted classifiers have better F-measure score compared to their
corresponding initial classifier. Noticeably, Game− L1dL1a out-
performs Game − L2dL1a on most portions of test data. To be
specific, Game − L1dL1a has a better performance on both near
and far future test data compared with Game − L2dL1a. AUC-
value shown in Figure 6b and Figure 7b also indicates thatGame−
L1dL1a achieves the best performance. Based on the above result
comparisons, we can make the conclusion thatGame−L1dL1a is
the best setting for our game-theoretic model. In other worlds, by
assuming adversary is conducting sparse feature attack, classifier
is with `1 regularizer, the game theoretic model produces the most
robust classifier.

We then apply the same procedure using square and hinge loss
functions. One should notice that for adversary the two loss func-
tions are quite similar. The main difference between the two is that
hinge loss function for adversary represent the the loss of correctly
classified positive data being classified as negative data. While for
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(b) Loss function as Hinge Loss.

Figure 9: Sparse model Game − L1dL1a has the best F-measure
results on far future data, and for hinge loss, from Figure b, we can
notice that the performance is also competitive on near future data.

square loss, the explanation is the same as logistic loss. We find
that compared with the initial classifier, classifier learnt from model
Game−L1dL1a has significant improved robustness to data in the
future. From Figure 9, we can see that in both cases, Sparse model
Game − L1dL1a has better F-measure on data that is after about
Mar02. Noticeably, for hinge loss, performance of the classifier
learnt from the game model on the near future data is almost the
same as the corresponding initial classifier.

5.5 Adversary as random concept shift
Preceding experiments conducted on spam email data set val-

idated the effectiveness of our assumption on the adversarial be-
haviour (sparse feature attack). However, one may argue that train-
ing and test data are intrinsically different without any assumptions.
In other words, the two sets of data are different despite they come
from the same distribution. As we mentioned before, there may be
unpredictable random concept drift in the future. Thus, the ques-
tion is, can we obtain a robust adapted classifier by taking a random
concept change into consideration?

To answer the above question, we can simply simulate the ad-
versary’s attack in Algorithm 1 as randomly changing all the train-
ing data. Thus, for each repetition in Algorithm 1, the original
training data is transformed from D = {(xi, yi)}ni=1 to D∗ =
{(xi + ai, yi)}ni=1, where ai is a vector with elements generated
from a normal distribution N (0, 0.1). We use classifier with `1
regularizer to compare the effectiveness between the initial classi-
fier and the classifier learned from the game model. We run the
model until the Cost is nearly equal to MC and take averaged
F-measure value of ten runs of the experiment as the result. We
can observe that in Figure 10, F-measure of the adapted classifier
trained on randomly changed data shows no improvement on the
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Figure 10: Classifier trained on random changed training data has
no improvement compared with initial classifier in F-measure.

test data compared with initial classifier. The failure of this model
further verified the effectiveness of our assumption that an adver-
sary will conduct sparse feature attack on positive data.

6. CONCLUSIONS
In many classification environments including spam email filter-

ing and fraud detection, positive data are continuously transformed
to deceive the classifier in the future. Traditional machine learning
methods built on static training data fail in this scenario. A number
of researches have formulated this adversarial scenario into a game
played by a data miner and an adversary.

We formulated the interactions between the data miner and the
adversary into a repeated game (not a Stackelberg game), where
adversary and data miner act sequentially. With properly defined
loss functions, the game is casted into two convex optimization
problems. We provided insights of why sparse strategy instead
of dense strategy should be applied by the two players in the re-
peated game. The robustness superiority of the classifier learnt
through the sparse model Game − L1dL1a is verified through
experiments conducted on real spam email data set. To sum up,
in adversarial learning, classifier learnt through the game-theoretic
modelGame−L1dL1a achieves the best performance in terms of
robustness.

In the future we plan to design a new algorithm for the simulta-
neous game so that we can solve for a real Nash Equilibrium. Also,
we may combine multi-assumptions of the adversary’s behaviour
and build an ensemble classifier that is more robust in the presence
of adversaries.
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