UAV Systems and Security

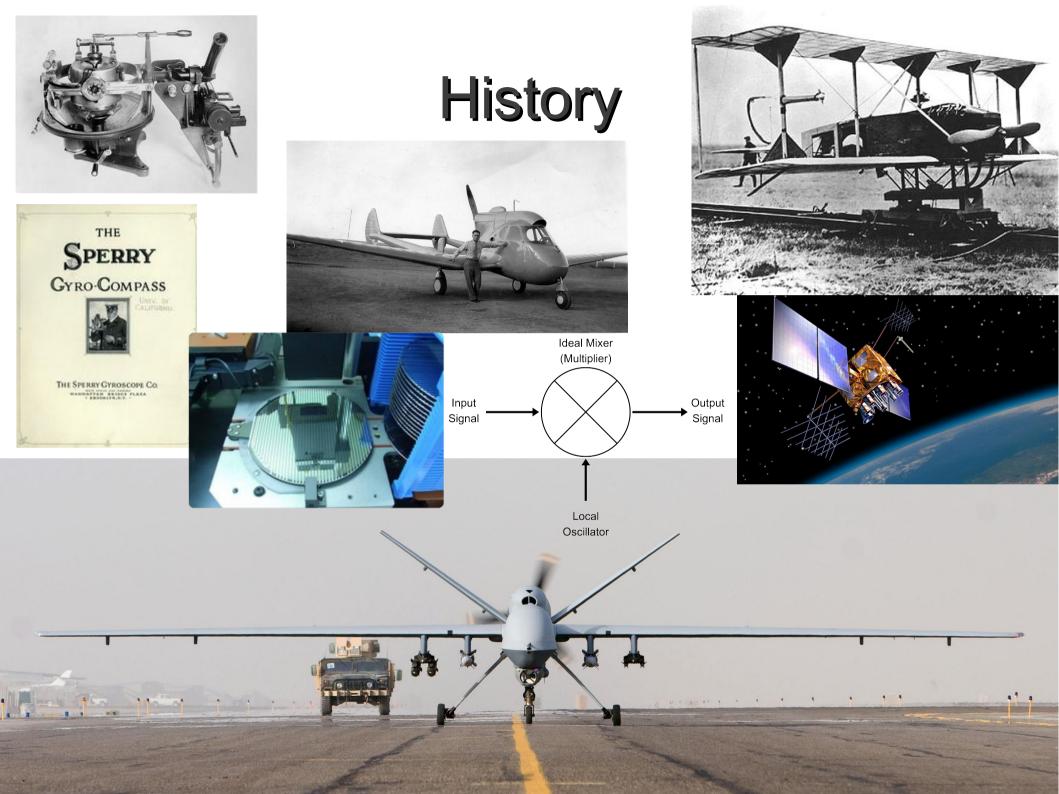
Stuart MacIntosh aka barf

SAFETY

- $F = \frac{1}{2} m \cdot v^2$
- Learn real aviation standard operating procedures (SOPs)
- RIP Roman Pirozek
- Death or injury can result
 - don't war-hack other ppls drones, centrifuges, pacemakers, et cetera; disclaimation disclaimed

Nomenclature

Fancy word for 'words used'


- Remotely Piloted Vehicle (RPV)
 - Radio Control (RC) planes and man-sized toys
 - aka First Person View (FPV) flight
 - Fun

 Unmanned Aerial/Autonomous Vehicle/System (UAV / UAS)

- Look anything like RC to real planes
- Autonomous navigation
 - takeoff, waypoints, loiter, landing, etc
- RPV/FPV flight capable, for safety reasons
- Follows a Flight Plan

Flight School

- Fixed-wing
 - As opposed to flapping-wing (ornithopter)
- Rotary-wing
 - N-copters (quad, hexacopter, octacopter, etc)
 - Helicopters
- Lift, Drag, Stall, Air masses & energy management
- Radio navigation
- Dead reckoning

UAV : military

- Example US MILSPEC nomenclature:
 - RQ-4 "GlobalHawk"
 - RQ-21 "ScanEagle" 1x gifted to Iran
 - MQ-8 "FireScout" LibyaFailScout?
 - MQ-9 "Reaper" some lost in Afghanistan
- Shares/sometimes is civilian/commercial technology, aka commercial off-the-shelf sourcing (COTS)
- Lots in common with commercial UAV tech anyway
- Big hardware catalog & lotsa MILSPEC tech pr0n selfies online
- Empirical performance data
- System designs given away in sales material
- Purpose: war

War

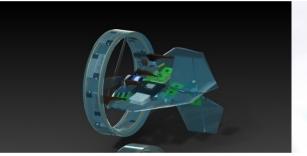
- If you thought John Connor needed protecting from Terminators, imagine how Afghanis feel about their kids...
- Therefore; Terminator was phrophecy, also a movie

UAV : civillian / commercial

- Has a lot in common with the DIY stuff
- Individuals to Aviation industry heavyweights
- We see COTS UAVs used today for
 - Aerial photography and film
 - Science, research and education
 - First responders, Police, Fire, Search and rescue
 - Industry (only for agriculture here in NZ, AFAIK)
 - Please tell me if you know any others!

Hobby-spec == Commercial-spec?

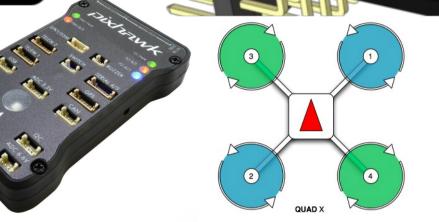
• Is that Futaba radio gear?


Open Source UAS

- GPL, BSD and various
 - Paparazzi. ARM7 STM32 and LPC21xx based
 - PX4. ARM7 STM32, NuttX, RTOS
 - OpenPilot. ARM7 STM32
 - ArduPilot. Pushing the limits of 8-bit AVRs!
 - All the others I'm missing(?)

Paparazzi

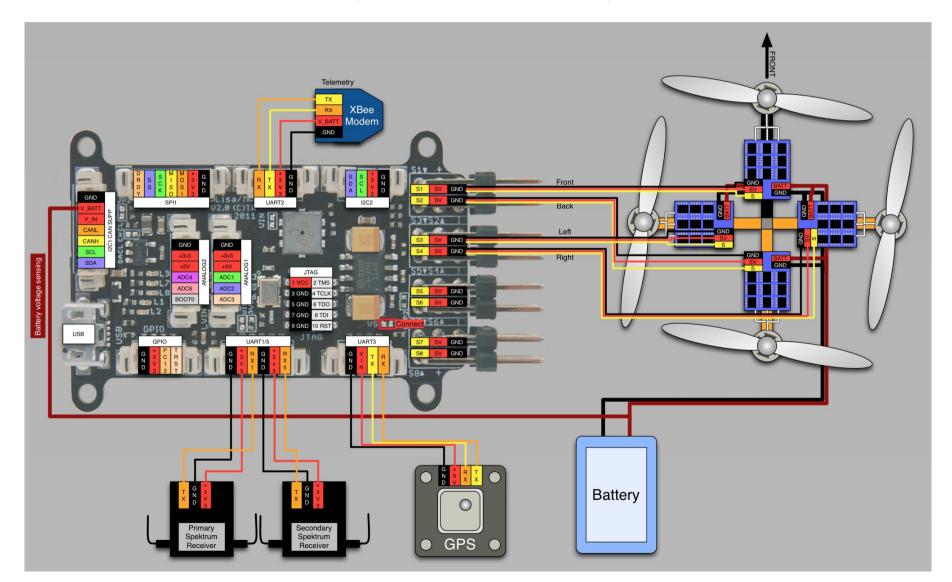
- GNU GPL hardware and software, with plenty of git activity, forks
- GNU Mailman mailing list!
- IMHO the most mature and professional Open Source autopilot
- MacOS X and GNU/Linux Ground Control Software
- Various hardware supported
- Community vendors

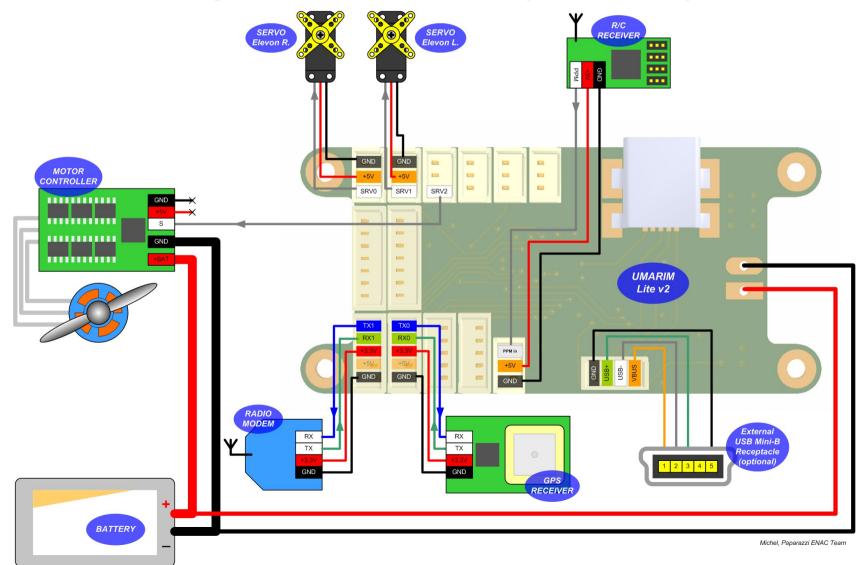


Pixhawk PX4

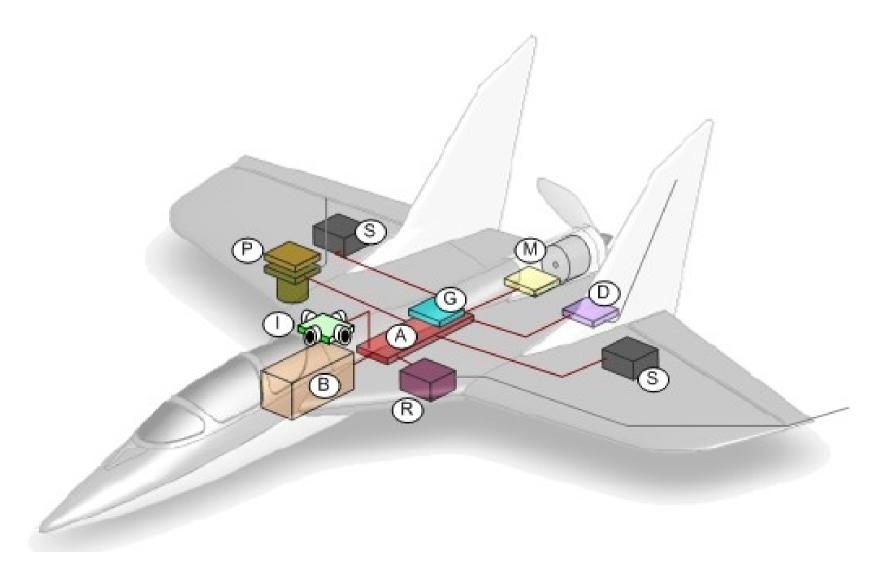
Cool Open Source project started by: Computer Vision and Geometry Group at ETH University, Zurich

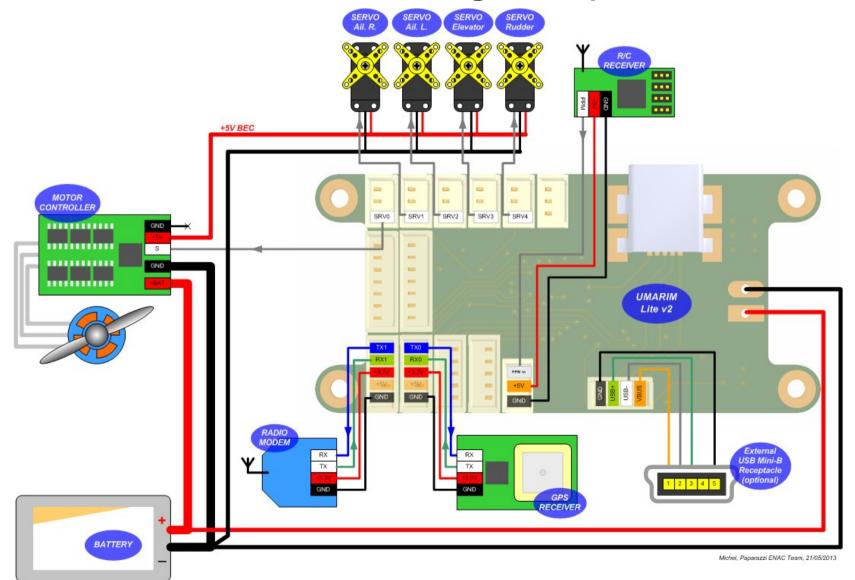
- Open Source (BSD) Hardware and Software
- High quality, professional design
- Growing user base and vendor list
- Plugs into Parrot ARDrone even
- Uses NuttX RTOS, POSIX shiz




Cute Own logo Forums Growing

ArduPilot


• Multi-rotor-craft (heli is similar)


• Fixed-wing RC aeroplane (Elevons)

• Fixed-wing RC aeroplane (Elevons)

• Conventional, fixed-wing aeroplane

Generic Design

- Inputs
 - RF modem (also an output)
 - GNSS receiver (4 Hz GPS or better)
 - RC receiver(s)
 - IMU / Thermopile array
- Outputs
 - Servos, and/or
 - Speed controller(s)

Ground Checks

- Complete checklists before every flight
- Flight-management unit checks
 - Firmware; stable, up-to-date
 - Flight plan; Simulation tested
- GNSS receiver
 - GPS:HDOP, Satellites in view, RSSI, up-to-date almanac, etc
- RC link
 - control surface defelections, standard RC flight range checks
- Radio Modem
 - 2-way communication with ground control

Securitah

- MILSPEC > DIY. Duh.
- Radio subject to interference, on a good day
- Kerckhoffs's principle
 - "A cryptosystem should be secure even if everything about the system, except the key, is public knowledge."

Attack surface

- Control systems
 - AHRS & Navigation control relies on (take 1x out):
 - GPS
 - IMU
 - [Thermopile array]
- Control interface(s)
 - COTS/hobbyist Radio Control systems
 - 802.15 aka ZigBee FHSS radio-modems
 - Proprietary RF systems (eg; some 868MHz radio modems)
 - PLMN (data over public UMTS, GPRS, LTE, et cetera)
- Physical
 - Interdiction
 - Weaponisation not a good idea; PTSD != fun

AHRS attacks

- if (!AHRS) { exit(1); }
- Jam GPS

- Received signal amplitude close to noise floor already
- Dead reckoning drift becomes uncorrectable
- Magnetometer (and other components) may become unreliable with chaff or HERF
- MEMS Gyro and Accelerometer maybe harder to upset
- Autopilots may alarm-off for limp home in RPV flight mode

Jamming

Illegal

- TL;DR
 - Easy. S/N ratio often low already
 - Buy jammers at dx.com, China websites
 - DIY with a VCO or two, mixer and amplifier
- The concept: 0∞ Hz
 - Usable signal = received signal noise floor.
 - Send broadband noise for FHSS

Common frequencies

- Common RC and radio-modem frequencies
 - 27 MHz
 - 29 MHz
 - 35-36 MHz
 - 40-42 MHz
 - 72 MHz
 - 433 MHz
 - 868 MHz
 - 915MHz (ISM general use)
 - 2.400-2.4835 GHz (ISM general use)
- How loss of radio control is handled varies
 - Paparazzi provides conditional flight plan blocks
 - In Ardupilot and others, an RC radio link is critical, flight plan design may afford recovery from signal loss situation (YMMV)

GPS Jamming

- Target frequencies:
 - L1: 1575.42 MHz
 - L2: 1227.60 MHz
 - (L5: 1176.45 MHz)
- Korean peninsula
 - Television often jammed
 - Radio often jammed
 - There's a market for this stuff
- Free shipping!!
- </real_security_problem>

Jamming Mitigation

- Modern GNSS receivers
- Moar power, FHSS, TDMA
- Design note: RF environment == hostile
 - Try and not rely on an RF link to complete any flight plan and land
 - Aircraft loiter / land upon unrecoverable link failure
 - RS232 can be multiplexed, piped thru crypto, old-school TTY hacked, etc
- Good antenna and placement, steering

- Open Sauce FHSS RC radio & modem
- Various RF chips supported, from RFM
- MAXHOPS = 24 (randomly selected from 255)
- Loop() { rfChannel++ }
- void bindRandomize() High security
- uint32_t magic is a number I'm XOR-ing

Parrot AR Drone

- Funny story: FHSS pwns DSSS
- 2.4 GHz ISM is very polluted spectrum
- YMMV flying an AR drone:
 - Near hackers
 - Near microwaves
 - Near RC planes
 - Further than 15 meters
 - On a good day

MAVLink (Protocol)

• Hello? Security? (difficult silence)

- Luckily 802.15 has some access controls
- Cos MAC addresses were never spoofed

Safety & Flight planning

- Plan your RPV and UAV flights thoroughly
- Learn about real aviation SOPs
- VFR traffic often flies low, beware of small planes
- FFS don't fly anywhere near an airport, or heliport
- Lookup CAA-published departures/approaches, routes, STARs, SIDs, ILS/DME and VORs. Understand where aircraft are, to better avoid them.
- Monitor the centre and nearest tower frequency
- Monitor ADS-B for even moar aeroplane infos